Quartz Crystal Nanobalance in Conjunction with Principal Component Analysis for Identification of Volatile Organic Compounds
نویسندگان
چکیده
Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds.
منابع مشابه
Application of quartz crystal nanobalance in conjunction with a net analyte signal based method for simultaneous determination of leucine, isoleucine and valine
The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val) were selectively determined by quartz crystal nanobalance (QCN) sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied fo...
متن کاملPotent affinity material for tracing acetone and related analytes based on molecular recognition by halogen bonds.
Affinity materials based on halogen bonds turned out to be a powerful tool for the molecular recognition of acetone or related carbonyl compounds in the presence of ubiquitous protic molecules. The superior selectivity and sensitivity were found by the gravimetric detection of volatile organic compounds by quartz crystal microbalances.
متن کاملApplication of a Quartz Crystal Microbalance (QCM) System Coated with Chromatographic Adsorbents for the Detection of Olive Oil Volatile Compounds
A sensor based on the technique of a piezoelectric quartz crystal microbalance (QCM) is analyzed for the detection of six organic volatile compounds with high olive oil sensory significance, such as hexanal, acetic acid, Z-3-hexenyl acetate, undecane, 1-octen-3-ol and 2-butanone. Four sample concentrations have been exposed to each QCM sensor constructed. The detection system is based on the sa...
متن کاملIdentification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology
Fungal volatile organic compounds (VOCs) have the potential of being used as biocontrol agents for biotechnological applications in agriculture, industry and medicine. In this research, different VOCs from secondary metabolites of biocontrol fungus Trichoderma virens (6011) KP671477 were separated using n-hexane, n-butanol and methanol solvents and identified by gas chromatography–mass spectrom...
متن کاملApplication of Fuzzy Clustering and Piezoelectric Chemical Sensor Array for Investigation on Organic Compounds
The Fuzzy c-Means (FCM) clustering models were used for the discrimination of organic compounds using piezoelectric chemical sensor array data of 14 analytes. Appropriate clusters are found by the sum of the weighted quadratic distances between data points and cluster prototypes. A priori known information can be integrated into the clustering algorithm by using constrained prototypes. A sensor...
متن کامل